HOMEWORK 10 - ANSWERS TO (MOST) PROBLEMS

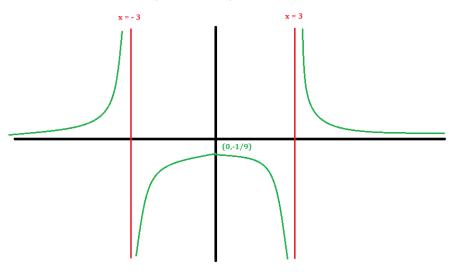
PEYAM RYAN TABRIZIAN

Section 4.5: Summary of curve sketching

4.5.11.

- $D : \mathbb{R} \{\pm 3\}$
- I : No *x*-intercepts, *y*-intercept: $y = -\frac{1}{9}$
- S : f is even
- A : Horizontal Asymptote y = 0 (at $\pm \infty$), Vertical Asymptotes $x = \pm 3$
- I : $f'(x) = -\frac{2x}{(x^2-9)^2}$; f is increasing on $(-\infty, -3) \cup (-3, 0)$ and decreasing on $(0,3) \cup (3\infty)$. Local maximum of $\frac{-1}{9}$ at 0.
- C : $f''(x) = 6\frac{x^2+3}{(x^2-9)^3}$; f is concave up on $(-\infty, -3) \cup (3, \infty)$ and concave down on (-3, 3); No inflection points

1A/Homeworks/hw10graph1.png



4.5.31.

Note: First of all, f is periodic of period 2π , so we're only focusing on $[0, 2\pi]$.

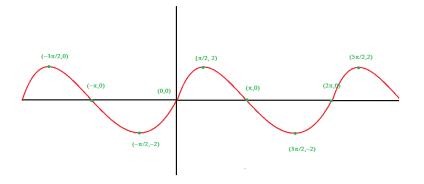
- $D \ : \ \mathbb{R}$
- I : x-intercepts: x = 0, $x = 2\pi$ (basically you should get sin(x) = 3, which is impossible), y-intercept: y = 0
- S : Again, f is periodic of period 2π . Also, f is odd.
- A : No asymptotes

Date: Monday, April 11th, 2011.

PEYAM RYAN TABRIZIAN

- I : $f'(x) = 3\cos(x) 3\cos(x)\sin(x) = 3\cos(x)(1 \sin^2(x)) = 3\cos^3(x);$ Increasing on $(0, \frac{\pi}{2}) \cup (\frac{3\pi}{2}, 2\pi);$ Decreasing on $(\frac{\pi}{2}, \frac{3\pi}{2}).$ Local maximum of 2 at $x = \frac{\pi}{2}$. Local minimum of -1 at $x = \frac{3\pi}{2}.$
- C : $f''(x) = -9\sin(x)\cos^2(x)$; Concave down on $(0,\pi)$ and Concave up on $(\pi, 2\pi)$. Inflection point $(\pi, 0)$

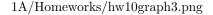
1A/Homeworks/hw10graph2.png

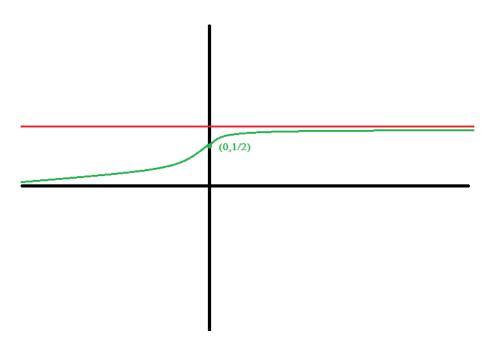


4.5.41.

- $D : \mathbb{R}$
- I : No *x*-intercepts, *y*-intercept: $y = \frac{1}{2}$
- S : No symmetries

- A : Horizontal Asymptotes: y = 0 (at $-\infty$), y = 1 (at ∞) I : $f'(x) = \frac{e^{-x}}{(1+e^{-x})^2} > 0$, so f is decreasing on \mathbb{R} C : $f''(x) = \frac{e^x e^x 1}{e^x + 1^3}$ (multiply numerator and denominator by $(e^x)^3$ after simplifying), so f is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$. Inflection point at $(0, \frac{1}{2})$





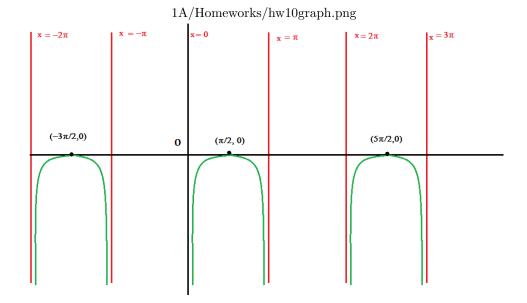
4.5.47.

- Note: : First of all, f is periodic of period 2π , so from now on we may assume that $x \in [0, 2\pi]$
 - D : We want sin(x) > 0, so the domain is $(0, \pi)$
 - I : No *y*-intercepts, *x*-intercepts: Want $\ln(\sin(x)) = 0$, so $\sin(x) = 1$, so $x = \frac{\pi}{2}$
 - S : Again, f is periodic of period 2π
 - A : No horizontal/slant asymptotes, but $\lim_{x\to 0^+} \ln(\sin(x)) = \ln(0^+) = -\infty$, so x = 0 is a vertical asymptote. Also $\lim_{x\to\pi^-} \ln(\sin(x)) = -\infty$, so $x = \pi$ is also a vertical asymptote.

I : $f'(x) = \frac{\cos(x)}{\sin(x)} = \cot(x)$, then $f'(x) = 0 \Leftrightarrow x = \frac{\pi}{2}$, and using a sign table, we can see that f is increasing on $(0, \frac{\pi}{2})$ and decreasing on $(\frac{\pi}{2}, \pi)$. Moreover, $f(\frac{\pi}{2}) = \ln(1) = 0$ is a local maximum of f.

Moreover, $f(\frac{\pi}{2}) = \ln(1) = 0$ is a local maximum of f. C : $f''(x) = -\csc^2(x) < 0$, so f is concave down on $(0, \pi)$

PEYAM RYAN TABRIZIAN



4

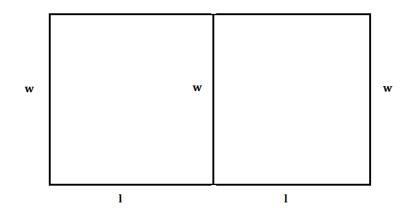
Section 4.7: Optimization Problems

4.7.3.

- Want to minimize x + y- But xy = 100, so $y = \frac{10}{x}$, so $x + y = x + \frac{100}{x}$ - Let $f(x) = x + \frac{100}{x}$ - x > 0 (x is positive) - $f'(x) = 0 \Leftrightarrow 1 - \frac{100}{x^2} = 0 \Leftrightarrow x^2 = 100 \Leftrightarrow x = 10$ - By FDTAEV, x = 100 is the absolute minimum of f- Answer: $x = 100, y = \frac{100}{100} = 1$

4.7.11. The picture is as follows:

1A/Practice Exams/Fence.png



- Want to minimize 3w + 4l
- But 2lw = 1.5, so $l = \frac{0.75}{w}$, so $3w + 4l = 3w + \frac{3}{w}$
- Let $f(w) = 3w + \frac{3}{w}$
- w > 0
- $f'(x) = 0 \Leftrightarrow 3 \frac{3}{w^2} = 0 \Leftrightarrow w^2 = 1 \Leftrightarrow w = 1$ By FDTAEV, w = 1 is the absolute minimum of f
- Answer: $|w = 1, 2l = \overline{1.5}$

4.7.19.

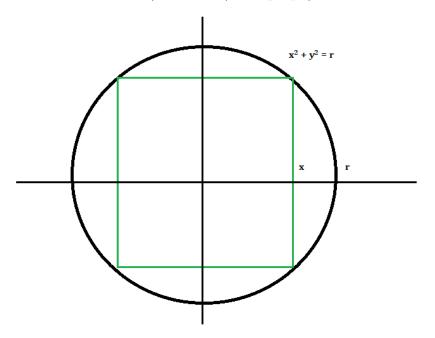
- We have $D = \sqrt{(x-1)^2 + y^2}$, so $D^2 = (x-1)^2 + y^2$

- But $y^2 = 4 4x^2$, so $D^2 = (x 1)^2 + 4 4x^2$ Let $f(x) = (x 1)^2 + 4 4x^2$
- No constraints
- $f'(x) = 2(x-1) 8x = -6x 2 = 0 \Leftrightarrow x = -\frac{1}{3}$ By the FDTAEV, $x = -\frac{1}{3}$ is the maximizer of f.
- Since $y^2 = 4 4x^2$, we get $y^2 = 4 \frac{4}{9} = \frac{32}{9}$, so $y = \pm \sqrt{\frac{32}{9}} = \pm \frac{4\sqrt{2}}{3}$

- Answer:
$$\left(-\frac{1}{3}, -\frac{4\sqrt{2}}{3}\right)$$
 and $\left(-\frac{1}{3}, \frac{4\sqrt{2}}{3}\right)$

4.7.21. Picture:

1A/Homeworks/hw10opt1.png



- We have A = xy, but the trick here again is to maximize $A^2 = x^2y^2$ (thanks for Huiling Pan for this suggestion!) - But $x^2 + y^2 = r^2$, so $y^2 = r^2 - x^2$, so $A^2 = x^2(r^2 - x^2) = x^2r^2 - x^4$ - Let $f(x) = x^2r^2 - x^4$

- Constraint $0 \le x \le r$ (look at the picture) $f'(x) = 2xr^2 4x^3 = 0 \Leftrightarrow x = 0$ or $x = \frac{r}{\sqrt{2}}$ By the closed interval method, $x = \frac{r}{\sqrt{2}}$ is a maximizer of f (basically f(0) = f(r) = 0

- Answer:
$$x = \frac{r}{\sqrt{2}}, y = \sqrt{r^2 - \frac{r^2}{2}} = \frac{r}{\sqrt{2}}$$

4.7.30.

- Let w be the width of the rectangle, and h the height of the rectangle.
- Let w be the width of the rectangle, and h the height of the rectangle. We have $A = wh + \pi(\frac{w}{2})^2 = wh + \frac{\pi}{4}w^2$, but $w + 2h + 2\pi\frac{w}{2} = 30$, so $2h + \pi w + w = 30$, so $h = \frac{30 (\pi + 1)w}{2}$. Hence $A = w(\frac{30 (\pi + 1)w}{2}) + \frac{\pi}{4}w^2$ Let $f(w) = w(\frac{30 (\pi + 1)w}{2}) + \frac{\pi}{4}w^2$ Constraint: w > 0- $f'(w) = 15 \frac{(\pi + 2)}{2}w = 0 \Leftrightarrow w = \frac{30}{\pi + 2}$ (there's a big cancellation going on!) By FDTAEV, $w = \frac{30}{\pi + 2}$ is the maximizer of f

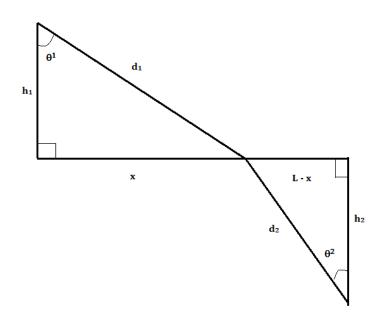
- Answer: $w = \frac{30}{\pi + 2}, h = \frac{15}{\pi + 2}$

 $\mathbf{6}$

4.7.53. (a) $c'(x) = \frac{C'(x)x - C(x)}{x^2}$. When c is at its minimum, c'(x) = 0, so C'(x)x - C(x) = 0, so $C'(x) = \frac{C(x)}{x} = c(x)$, so C'(x) = c(x), i.e. marginal cost equals the average cost!

4.7.63. (thank you Brianna Grado-White for the solution to this problem!) The picture is as follows:

1A/Homeworks/hw10opt2.png



Here, h_1 and h_2 and L are fixed, but x varies. Now the total time taken is $t = t_1 + t_2 = \frac{d_1}{v_1} + \frac{d_2}{v_2}$.

Now, by the Pythagorean theorem: $d_1 = \sqrt{x^2 + h_1^2}$ and $d_2 = \sqrt{(L-x)^2 + h_2^2}$, so we get:

$$t(x) = \frac{\sqrt{x^2 + h_1^2}}{v_1} + \frac{\sqrt{(L-x)^2 + h_2^2}}{v_2}$$

And

$$t'(x) = \frac{x}{v_1\sqrt{x^2 + h_1^2}} + \frac{x - L}{v_2\sqrt{(L - x)^2 + h_2^2}} = \frac{x}{v_1d_1} + \frac{x - L}{v_2d_2}$$

Setting t'(x) = 0 and cross-multiplying, we get:

 $v_1 d_1 (L-x) = v_2 d_2 x$ So, by definition of $\sin(\theta_1)$ and $\sin(\theta_2)$), we get:

$$\frac{v_1}{v_2} = \frac{d_2 x}{(L-x)d_1} = \frac{\frac{x}{d_1}}{\frac{L-x}{d_2}} = \frac{\sin(\theta_1)}{\sin(\theta_2)}$$

Section 4.9: Antiderivatives

4.9.7. $F(x) = 5\frac{x^{\frac{5}{4}}}{\frac{5}{4}} - 7\frac{x^{\frac{7}{4}}}{\frac{7}{4}} + C = 4x^{\frac{5}{4}} - 4x^{\frac{7}{4}} + C$ **4.9.24.** $f'(x) = 2x + \frac{1}{4}x^4 + \frac{1}{7}x^7 + A$, so $f(x) = x^2 + \frac{1}{20}x^5 + \frac{1}{56}x^8 + Ax + B$ **4.9.33.** $f(x) = -2\sin(t) + \tan(t) + C$, but $4 = f(\frac{\pi}{3}) = -\sqrt{3} + \sqrt{3} + C = C$, so $f(x) = -2\sin(t) + \tan(t) + 4$ **4.9.33.** If $f''(\theta) = \sin(\theta) + \cos(\theta)$, then $f'(\theta) = -\cos(\theta) + \sin(\theta) + C$. f'(0) = 4, so -1 + 0 + C = 4, so C = 5. Hence $f'(\theta) = -\cos(\theta) + \sin(\theta) + 5$. Hence $f(\theta) = -\sin(\theta) - \cos(\theta) + 5\theta + C'$. f(0) = 3, so -0 - 1 + 0 + C' = 3, so C' = 4. Hence $f(\theta) = -\sin(\theta) - \cos(\theta) + 5\theta + 4$

4.9.61. $a(t) = 10\sin(t) + 3\cos(t)$, so $v(t) = -10\cos(t) + 3\sin(t) + A$, so $s(t) = -10\sin(t) - 3\cos(t) + At + B$

Now,
$$s(0) = 0$$
, but $s(0) = -10(0) - 3(1) + A(0) + B$, so $-3 + B = 0$, so $B = 3$

So
$$s(t) = -10\sin(t) - 3\cos(t) + At + 3$$

Moreover, $s(2\pi) = 12$, but $s(2\pi) = -10(0) - 3(1) + A(2\pi) + 3 = A(2\pi)$, so $A(2\pi) = 12$, so $A = \frac{12}{2\pi} = \frac{6}{\pi}$

So altogether, you get: $s(t) = -10\sin(t) - 3\cos(t) + \frac{6}{\pi}t + 3$

4.9.74. First of all, the acceleration of the car is a(t) = -16, so v(t) = -16t + C. We want to find v(0) = C, so once we find C, we're done!

Let t^* be the time when the car comes to a stop. Then $v(t^*) = 0$, so $-16t^* + C = 0$, so $C = 16t^*$. So once we find t^* , we're done!

Now we know that $s(t^*) - s(0) = 200$, but $s(t) = -8t^2 + Ct + C'$, so $200 = -8(t^*)^2 + Ct^* + C' + 0 - C(0) - C' = -8(t^*)^2 + 16t^*t^* = 8(t^*)^2$, so $8(t^*)^2 = 200$, so $(t^*)^2 = 25$ so $t^* = 5$ (assuming time is positive)

Whence $v(0) = C = 16t^* = 80$