HOMEWORK 10 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 4.5: Summary of curve sketching

4.5.11.

D : $\mathbb{R}-\{ \pm 3\}$
I : No x-intercepts, y-intercept: $y=-\frac{1}{9}$
$\mathrm{S}: f$ is even
A : Horizontal Asymptote $y=0$ (at $\pm \infty$), Vertical Asymptotes $x= \pm 3$
I : $f^{\prime}(x)=-\frac{2 x}{\left(x^{2}-9\right)^{2}} ; f$ is increasing on $(-\infty,-3) \cup(-3,0)$ and decreasing on $(0,3) \cup(3 \infty)$. Local maximum of $\frac{-1}{9}$ at 0 .
C : $f^{\prime \prime}(x)=6 \frac{x^{2}+3}{\left(x^{2}-9\right)^{3}} ; f$ is concave up on $(-\infty,-3) \cup(3, \infty)$ and concave down on $(-3,3)$; No inflection points

1A/Homeworks/hw10graph1.png

4.5.31.

Note: First of all, f is periodic of period 2π, so we're only focusing on $[0,2 \pi]$.
D : \mathbb{R}
I : x-intercepts: $x=0, x=2 \pi$ (basically you should get $\sin (x)=3$, which is impossible), y-intercept: $y=0$
S : Again, f is periodic of period 2π. Also, f is odd.
A : No asymptotes

[^0]I : $f^{\prime}(x)=3 \cos (x)-3 \cos (x) \sin (x)=3 \cos (x)\left(1-\sin ^{2}(x)\right)=3 \cos ^{3}(x)$; Increasing on $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)$; Decreasing on $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. Local maximum of 2 at $x=\frac{\pi}{2}$. Local minimum of -1 at $x=\frac{3 \pi}{2}$.
C : $f^{\prime \prime}(x)=-9 \sin (x) \cos ^{2}(x)$; Concave down on $(0, \pi)$ and Concave up on $(\pi, 2 \pi)$. Inflection point $(\pi, 0)$

4.5.41.
$\mathrm{D}: \mathbb{R}$
I : No x-intercepts, y-intercept: $y=\frac{1}{2}$
S : No symmetries
A : Horizontal Asymptotes: $y=0($ at $-\infty), y=1$ (at ∞)
I : $f^{\prime}(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}>0$, so f is decreasing on \mathbb{R}
$\mathrm{C}: f^{\prime \prime}(x)=\frac{e^{x} e^{x}-1}{e^{x}+1^{3}}$ (multiply numerator and denominator by $\left(e^{x}\right)^{3}$ after simplifying), so f is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$. Inflection point at $\left(0, \frac{1}{2}\right)$

1A/Homeworks/hw10graph3.png

4.5.47.

Note: : First of all, f is periodic of period 2π, so from now on we may assume that $x \in[0,2 \pi]$
$\mathrm{D}:$ We want $\sin (x)>0$, so the domain is $(0, \pi)$
I : No y-intercepts, x-intercepts: Want $\ln (\sin (x))=0$, so $\sin (x)=1$, so $x=\frac{\pi}{2}$
$\mathrm{S}:$ Again, f is periodic of period 2π
A : No horizontal/slant asymptotes, but $\lim _{x \rightarrow 0^{+}} \ln (\sin (x))=\ln \left(0^{+}\right)=-\infty$, so $x=0$ is a vertical asymptote. Also $\lim _{x \rightarrow \pi^{-}} \ln (\sin (x))=-\infty$, so $x=\pi$ is also a vertical asymptote.
I : $f^{\prime}(x)=\frac{\cos (x)}{\sin (x)}=\cot (x)$, then $f^{\prime}(x)=0 \Leftrightarrow x=\frac{\pi}{2}$, and using a sign table, we can see that f is increasing on $\left(0, \frac{\pi}{2}\right)$ and decreasing on $\left(\frac{\pi}{2}, \pi\right)$. Moreover, $f\left(\frac{\pi}{2}\right)=\ln (1)=0$ is a local maximum of f.
$\mathrm{C}: f^{\prime \prime}(x)=-\csc ^{2}(x)<0$, so f is concave down on $(0, \pi)$.

Section 4.7: Optimization Problems

4.7.3.

- Want to minimize $x+y$
- But $x y=100$, so $y=\frac{100}{x}$, so $x+y=x+\frac{100}{x}$
- Let $f(x)=x+\frac{100}{x}$
- $x>0$ (x is positive)
- $f^{\prime}(x)=0 \Leftrightarrow 1-\frac{100}{x^{2}}=0 \Leftrightarrow x^{2}=100 \Leftrightarrow x=10$
- By FDTAEV, $x=100$ is the absolute minimum of f
- Answer: $x=100, y=\frac{100}{100}=1$
4.7.11. The picture is as follows:

1A/Practice Exams/Fence.png

- Want to minimize $3 w+4 l$
- But $2 l w=1.5$, so $l=\frac{0.75}{w}$, so $3 w+4 l=3 w+\frac{3}{w}$
- Let $f(w)=3 w+\frac{3}{w}$
- $w>0$
- $f^{\prime}(x)=0 \Leftrightarrow 3-\frac{3}{w^{2}}=0 \Leftrightarrow w^{2}=1 \Leftrightarrow w=1$
- By FDTAEV, $w=1$ is the absolute minimum of f
- Answer: $w=1,2 l=1.5$

4.7.19.

- We have $D=\sqrt{(x-1)^{2}+y^{2}}$, so $D^{2}=(x-1)^{2}+y^{2}$
- But $y^{2}=4-4 x^{2}$, so $D^{2}=(x-1)^{2}+4-4 x^{2}$
- Let $f(x)=(x-1)^{2}+4-4 x^{2}$
- No constraints
- $f^{\prime}(x)=2(x-1)-8 x=-6 x-2=0 \Leftrightarrow x=-\frac{1}{3}$
- By the FDTAEV, $x=-\frac{1}{3}$ is the maximizer of f.
- Since $y^{2}=4-4 x^{2}$, we get $y^{2}=4-\frac{4}{9}=\frac{32}{9}$, so $y= \pm \sqrt{\frac{32}{9}}= \pm \frac{4 \sqrt{2}}{3}$
- Answer: $\left(-\frac{1}{3},-\frac{4 \sqrt{2}}{3}\right)$ and $\left(-\frac{1}{3}, \frac{4 \sqrt{2}}{3}\right)$
4.7.21. Picture:

> 1A/Homeworks/hw10opt1.png

- We have $A=x y$, but the trick here again is to maximize $A^{2}=x^{2} y^{2}$ (thanks for Huiling Pan for this suggestion!)
- But $x^{2}+y^{2}=r^{2}$, so $y^{2}=r^{2}-x^{2}$, so $A^{2}=x^{2}\left(r^{2}-x^{2}\right)=x^{2} r^{2}-x^{4}$
- Let $f(x)=x^{2} r^{2}-x^{4}$
- Constraint $0 \leq x \leq r$ (look at the picture)
- $f^{\prime}(x)=2 x r^{2}-4 x^{3}=0 \Leftrightarrow x=0$ or $x=\frac{r}{\sqrt{2}}$
- By the closed interval method, $x=\frac{r}{\sqrt{2}}$ is a maximizer of f (basically $f(0)=f(r)=0$
- Answer: $x=\frac{r}{\sqrt{2}}, y=\sqrt{r^{2}-\frac{r^{2}}{2}}=\frac{r}{\sqrt{2}}$

4.7.30.

- Let w be the width of the rectangle, and h the height of the rectangle.
- We have $A=w h+\pi\left(\frac{w}{2}\right)^{2}=w h+\frac{\pi}{4} w^{2}$, but $w+2 h+2 \pi \frac{w}{2}=30$, so $2 h+\pi w+w=30$, so $h=\frac{30-(\pi+1) w}{2}$. Hence $A=w\left(\frac{30-(\pi+1) w}{2}\right)+\frac{\pi}{4} w^{2}$
- Let $f(w)=w\left(\frac{30-(\pi+1) w}{2}\right)+\frac{\pi}{4} w^{2}$
- Constraint: $w>0$
- $f^{\prime}(w)=15-\frac{(\pi+2)}{2} w=0 \Leftrightarrow w=\frac{30}{\pi+2}$ (there's a big cancellation going on!)
- By FDTAEV, $w=\frac{30}{\pi+2}$ is the maximizer of f
- Answer: $w=\frac{30}{\pi+2}, h=\frac{15}{\pi+2}$
4.7.53. (a) $c^{\prime}(x)=\frac{C^{\prime}(x) x-C(x)}{x^{2}}$. When c is at its minimum, $c^{\prime}(x)=0$, so $C^{\prime}(x) x-$ $C(x)=0$, so $C^{\prime}(x)=\frac{C(x)}{x}=c(x)$, so $C^{\prime}(x)=c(x)$, i.e. marginal cost equals the average cost!
4.7.63. (thank you Brianna Grado-White for the solution to this problem!) The picture is as follows:

1A/Homeworks/hw10opt2.png

Here, h_{1} and h_{2} and L are fixed, but x varies.
Now the total time taken is $t=t_{1}+t_{2}=\frac{d_{1}}{v_{1}}+\frac{d_{2}}{v_{2}}$.
Now, by the Pythagorean theorem: $d_{1}=\sqrt{x^{2}+h_{1}^{2}}$ and $d_{2}=\sqrt{(L-x)^{2}+h_{2}^{2}}$, so we get:

$$
t(x)=\frac{\sqrt{x^{2}+h_{1}^{2}}}{v_{1}}+\frac{\sqrt{(L-x)^{2}+h_{2}^{2}}}{v_{2}}
$$

And

$$
t^{\prime}(x)=\frac{x}{v_{1} \sqrt{x^{2}+h_{1}^{2}}}+\frac{x-L}{v_{2} \sqrt{(L-x)^{2}+h_{2}^{2}}}=\frac{x}{v_{1} d_{1}}+\frac{x-L}{v_{2} d_{2}}
$$

Setting $t^{\prime}(x)=0$ and cross-multiplying, we get:

$$
v_{1} d_{1}(L-x)=v_{2} d_{2} x
$$

So, by definition of $\sin \left(\theta_{1}\right)$ and $\left.\sin \left(\theta_{2}\right)\right)$, we get:

$$
\frac{v_{1}}{v_{2}}=\frac{d_{2} x}{(L-x) d_{1}}=\frac{\frac{x}{d_{1}}}{\frac{L-x}{d_{2}}}=\frac{\sin \left(\theta_{1}\right)}{\sin \left(\theta_{2}\right)}
$$

Section 4.9: Antiderivatives
4.9.7. $F(x)=5 \frac{x^{\frac{5}{4}}}{\frac{5}{4}}-7 \frac{x^{\frac{7}{4}}}{\frac{7}{4}}+C=4 x^{\frac{5}{4}}-4 x^{\frac{7}{4}}+C$
4.9.24. $f^{\prime}(x)=2 x+\frac{1}{4} x^{4}+\frac{1}{7} x^{7}+A$, so $f(x)=x^{2}+\frac{1}{20} x^{5}+\frac{1}{56} x^{8}+A x+B$
4.9.33. $f(x)=-2 \sin (t)+\tan (t)+C$, but $4=f\left(\frac{\pi}{3}\right)=-\sqrt{3}+\sqrt{3}+C=C$, so $f(x)=-2 \sin (t)+\tan (t)+4$
4.9.33. If $f^{\prime \prime}(\theta)=\sin (\theta)+\cos (\theta)$, then $f^{\prime}(\theta)=-\cos (\theta)+\sin (\theta)+C$.
$f^{\prime}(0)=4$, so $-1+0+C=4$, so $C=5$.
Hence $f^{\prime}(\theta)=-\cos (\theta)+\sin (\theta)+5$.
Hence $f(\theta)=-\sin (\theta)-\cos (\theta)+5 \theta+C^{\prime}$.
$f(0)=3$, so $-0-1+0+C^{\prime}=3$, so $C^{\prime}=4$.
Hence $f(\theta)=-\sin (\theta)-\cos (\theta)+5 \theta+4$
4.9.61. $a(t)=10 \sin (t)+3 \cos (t)$, so $v(t)=-10 \cos (t)+3 \sin (t)+A$, so $s(t)=$ $-10 \sin (t)-3 \cos (t)+A t+B$

Now, $s(0)=0$, but $s(0)=-10(0)-3(1)+A(0)+B$, so $-3+B=0$, so $B=3$
So $s(t)=-10 \sin (t)-3 \cos (t)+A t+3$
Moreover, $s(2 \pi)=12$, but $s(2 \pi)=-10(0)-3(1)+A(2 \pi)+3=A(2 \pi)$, so $A(2 \pi)=12$, so $A=\frac{12}{2 \pi}=\frac{6}{\pi}$

So altogether, you get: $s(t)=-10 \sin (t)-3 \cos (t)+\frac{6}{\pi} t+3$
4.9.74. First of all, the acceleration of the car is $a(t)=-16$, so $v(t)=-16 t+C$. We want to find $v(0)=C$, so once we find C, we're done!

Let t^{*} be the time when the car comes to a stop.
Then $v\left(t^{*}\right)=0$, so $-16 t^{*}+C=0$, so $C=16 t^{*}$. So once we find t^{*}, we're done!
Now we know that $s\left(t^{*}\right)-s(0)=200$, but $s(t)=-8 t^{2}+C t+C^{\prime}$, so $200=$ $-8\left(t^{*}\right)^{2}+C t^{*}+C^{\prime}+0-C(0)-C^{\prime}=-8\left(t^{*}\right)^{2}+16 t^{*} t^{*}=8\left(t^{*}\right)^{2}$, so $8\left(t^{*}\right)^{2}=200$, so $\left(t^{*}\right)^{2}=25$ so $t^{*}=5$ (assuming time is positive)

Whence $v(0)=C=16 t^{*}=80$

[^0]: Date: Monday, April 11th, 2011.

